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UNIQUENESS AND ESTIMATION OF THREE-DIMENSIONAL MOTION PARAMETERS 

OF RIGID OBJECTS WITH CURVED SURFACES 

R. Y. Tsai and  T, S. Huang 

August 14, 1981 

ABSTRACT 

We show that seven point correspondences are sufficient to 

uniquely determine from two perspective views the three-dimensional 

motion parameters (within a scale factor for the translations) of a 

rigid object with curved surfaces.  The seven points should not be 

traversed by two planes with one plane containing the origin, nor 

by a cone containing the origin.  A set of "essential parameters" 

are introduced wnicn uniquely determine the motion parameters up to 

a scale factor for the translations, and can be estimated by solving 

a set of linear equations which are derived from the correspondences 

of eight image points.  The actual motion parameters can subsequently 

be determined by computing the singular value decomposition (SVD) of a 

3x3 matrix containing the essential parameters.  No nonlinear equations 

need be solved. 

* The authors are with Coordinated Science Laboratory and Department of 
Electrical Engineering, University of Illinois at Urbana-Charapaign, 
Urbana, Illinois 61801. 



I. INTRODUCTION 

The importance of motion estimation in image sequence analysis has 

long been recognized, particularly in such fields as image coding, tracking 

and robotic vision. Methods for two-dimensional motion estimation are rela- 

tively well known [11-18]. As for three-dimensional motion estimation from 

two image frames, [2-3,20] show that when the object surface is planar, 

there exist a set of eight pure parameters that can be estimated by solving 

a set of linear equations. The equations were derived using the Lie Group 

theory [2], and the uniqueness of the eight pure parameters given all the 

image point correspondences on the image plane is established either using 

Lie Group Theory [2] or using elementary Mathematics [21].  In [20], it 

is shown that only four image point correspondences (no three points 

colinear) are sufficient to ensure the uniqueness of the pure parameters. 

[3] shows that once these pure parameters are estimated, the motion para- 

meters can be calculated by computing the SVD of a 3x3 matrix A consisting 

of the eight pure parameters, and the number of solutions is either one 

or two (usually two) depending on the multiplicity of the singular values 

of the matrix A.  [20] shows that regardless of the multiplicity of the 

singular values, the motion parameters are always unique given three 

image frames. 

For the case when the object surface is not restriced to be planar, 

existing theorectical analyses and estimation schemes were unsatisfactory 

in the sense that, theorectically, it was not known precisely how many 

image point correspondences are needed to ensure the uniqueness of the motion 



parameters (up to a scale factor for the translation parameters, of course), 

and practically, all estimation schemes rely on the solution of nonlinear 

equations using iterative search [4,10,19,23-25].  For example, it was 

stated in [10] that "in any case, the general method was not really practic- 

able, nor was it .designed for efficient use."  [19] ended up with 18 non- 

linear equations, and [4] 5 nonlinear equations.  The results stated in [23] 

on the minimum number of image correspondences were not intended to be 

rigorous or exact since the author tried simply to equate the numbers of 

unknowns and equations.  Another related problem is the stereo imaging prob- 

lem in photogrammetry and computer vision without assuming the relative orien- 

tation of the two cameras since pictures taken at two time instances with one 

camera can be regarded as taken with two cameras at one instance.  After the 

motion parameters are computed, the surface structure of the object can be 

determined by computing the z coordinates up to a scale factor using Eqs. (5a) 

or (5b) in this paper.  Despite the fact that much work has been done in this 

area (e.g., [27,28]), no one has studied the problem of minimum information 

required to ensure unique solutions, nor was there any technique deve- 

loped otner than solving nonlinear equations iteratively or making 

severe approximatons to the unknowns.  Another related problem is the 

so called "Location Determination Problem" as described in [26], where 

tne distances between the observed points are assumed to be known a prior, 

which of course creates a different but simpler problem.  In short, the 

results in the present paper should be of interest to many areas of 

research. 

In this paper, a solution to the problem of estimating three- 
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dimensional motion of" a rigid body from two image frames is presented. 

Two major theorems, one lemma and six corollaries regarding the uniqueness 

and estimation of motion parameters are stated and proved.  First, a 3x3 

matrix E containing 8 essential parameters are introduced. It can be 

factored into a product of a skew-sysmetric matrix containing only the 

translation parameters, and an orthonormal matrix containing only the 

rotation parameters.  Theorem I states that given the E matrix, the actual 

motion parameters are unique and can be determined simply by computing the 

SVD of the E matrix.  The E matrix can be estimated by solving a set of 

linear equations given 8 image point correspondences.  Lemma I shows that 

the actual motion parameters are unique if and only if a certain 4x4 matrix 

C  is skew-symmetric.  Theorem II shows that if all the observed points 

are not traversable by two planes with one plane containing the origin, nor 

by a cone containing the origin, then the matrix C has to be skew-symmetric. 

All other results follow from these two theorems and the lemma.  For 

example:  two planar patches determine the motion parameters uniquely; 

4 points on a plane not passing through the origin and 2 other points 

not on this plane determine the motion parameters uniquely; 6 points with 

4 on one plane, 4 on another, and 2 common to the above two groups of 4 

points on the intersections of the two planes can insure unique solution; 

7 points in general positions are sufficient to determine the motion 

parameters uniquely; etc.  Note that Theorem II only gives a sufficient 

condition.  Although 7 or more points in general positions are enough 

to ensure uniqueness, 6 or even 5 points are usually sufficient from 

our experience.  (One should be cautious not to take solutions that yield 



z's that are positive before the motion and negative after the motion, or 

vice versa.)  However, with 5, 6 or 7 points, one has to solve nonlinear 

equations with iterative search, while with 8 or more points, the simple 

method using SVD as stated in Theorem I can be used. 

II. THE £ MATRIX AND THE EIGHT ESSENTIAL PARAMETERS. 

The basic geometry of the problem is sketched in Fig. 1.  Consider 

a particular point P on an object.  Let 

(x,y,z) = object-space coordinates of a point P before motion. 

(x',y',z') = object-space coordinates of P after motion. 

(X,!) = image-space coordinates of P before motion. 

(X',Y') = image-space coordinates of P after motion. 

The mapping (X,Y)—►(X',I') for a particular point is called an image point 

correspondence.  It is well known [22] that any 3-D rigid body motion is 

equivalent to a rotation by an angle © around an axis through the origin 

with directional cosines n1,n2,n3, followed by a translation ( Ax,,4y,^z) 

(1) 

where  R is a  3 x 3 orthonormal matrix of the   1st kind   (i.e.  det(R)=1) 

n1 + (1-n1)cose                  n'in2(1-cose)-n3sine n1«3(1-cose)+n2sin© 

R  =    n1-n2(1-cose)+n3-sine      n2+( 1-n2,)cos« n3n3 (1-cos8)-n1«ine 

>n'ki3(1-Gos6)-n2sine      n2-n3 (1-cose)+n1sine n3+(1-nj^cos© 

(2) 



 .* 

(X,Y) = Image-space 
coordinates of the 
point P at time t1 

= Image-space 
coordinates of the 
point P at time 1% 

(AX^Y)=Image- 
space shifts from 
time tj to t2 for 
the point P 

(x^z)2 Object space 
coordinates of a physical 
point P on the object 
at time t^ 

W,y',z')= Object-space 
coordinates of the same 
point P at time ^2 PP-7096 

Fig. 1  Basic geooecry for chree- 
diaensional mocion 
escimacion. 
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r7   r8   r9 

and T = 

Az 

Although the elements in R, namely rl ,r2,...,r9, are nonlinear 

functions of the rotation parameters n1,n2,n3 and 9,  throughout this 

paper, the uniqueness and computation of R rather than n1,n2,n3 and 9 are 

discussed.  The reason is two fold.  First, as will be seen later, to each 

possible R in (2), there corresponds exactly two sets of rotation parameters 

n1,n2,n3,9 with one set the negative of the other.  Since these two solutions 

are physically indistinguishable, we may regard the relationship between 

R and the rotation parameters as one to one.  The second reason is that once 

R is determined, the task of computing n1,n2,n3 and 9 is trivial, as can 

be seen in the following: 

From (2), we have 

R  = S + K 

where 

S = 

and 

nl  +(1-n1   )cosB      n1n2(1-cos&) n1n3 (1-cose-) 

n1n2(1-Gos&) n2*,+ ( 1-n2,■ )cos8      n2n3(1-cos&) 

n1n3C!-cos9) n2n3(1-cos6) n3*+(1-n3   )cos9 

Is  symmetric 

is  skew-symmetric. 

0 -n3       +n2 

K  =  sin9-     +n3 0 -nl 

-n2       +n 1 0 

Since any matrix  can  be decomposed  uniquely into  a sum of a  symmetric  and 

a skew-symmetric matrix,  we  see  that   K is  unique given  R,   and  thus n1,n2, 
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n3»6 are fixed up to a possible sign change.  In fact, it is trvial to see 

that 
0      r2-r14    r3-r7 

1/2  r4-r2      0      r8-r6 

r7-r3    r8-r7 

or til-sin© = (r3-r6)/2, n2-sine = (r3-r7)/2) n3-sine = (r4-r2)/2, 

which imply sin^©(n1l+n21■+n3a■) = sin^&'l = d/4 

or    sine = ±d/2 ,       nl = ±(r3-r6)/d, 

n2 = +(r3-r7)/d ,    n3 = ±(r4-r2)/d , 

where d = (ro-r5f +(r3-r7f + {r^-rzf .   (If d=0,then 9=0, R=I, and 

n1,n2,n3 can be anything since without rotation, the axis is meaningless.) 

Since sinG alone does not determine 9 uniquely, we still need cosB to fix 9. 

2 2 
From (2), nl  + (1 - nl )cos9 ■ rl 

cos9 = 
rl - ni" 

1-nl2 

rl -(^) 
d 

i - c^i)2 
d2rl - (r8 - r6)2 

2 2 
dZ - (r8-r6)Z 

Therefore, 9, nl, n2 and n3 can be easily determined from R. 

Just as in [2-7], we now combine (1) with the following equations 

relating the object and image space coordinates: 

X = x/z X' = x'/z' 

Y = y/z Y' = y'/z' 

to obtain 

(rl X + r2 Y + r3)z + ^x 
X' 

(r7 X + rS Y + r9)z + Az 

(r4 X + r5 Y + ro )z + ^y 

(r7 X + rS Y + r9 )z + /\z 

(3) 

(4a) 

(4b) 

where the focal length F is normalized to 1 for simplicity.  From (4) 



Ax -   Az-X' 

X'(r7 X  + r3 Y  + r9)  -   (rl   X + r2 Y  + r3) 
(5a) 

Ay - AZ-Y' 
ana 

Y'(r?  X  + ro  Y  + r9)  -   (rU  X  + r5  Y   +r6) 
,,T.—■ • 

Equating  the  right  hand   sides of  (5a)   and   (5b)   gives 

[x-   Y-   ,] 

where 

Ax- r?  -Az-rl 

^y-rl   -Ax-r4 

el e2 

e4 e5 eo 

e7 e8 e9 

X 
=  0 

Y 

i 

A z-r5 - AY-fo 

Ax- r8 - Az- r2 

AV-rZ  - Ax-r5 

Az-r6 -Ay,r9 

Ax-r9 -Az-r3 

Ay,r3 -Ax-r6 

(5b) 

(6) 

(7) 

(S) 

Note that the equality of (6) will not be influenced by multiplying E 

by any scalar.  Since eacn element of E is linear in Ax, AY and Az, 

this simply means that there is a common scale factor for the translation 

parameters that cannot be determined.(This scale factor also influences 

z in (5a) and (5b), but not the rotation parameters.)  For this reason, 

we can always set e9 equal to some fixed number, say 1, without losing 

generality.  We call the elements in E "essential parameters" for 

reasons that will be seen later. 

It is obvious by observing (6) that, the 3x3 matrix E contains all 

the information one can possibly obtain given any number of image point 

correspondences (X,Y)—>(X',Y').  Thus if the E matrix can be determined 



10 
uniquely from a number of image point correspondences, then whether the 

motion parameters are unique or not depends soly on whether the motion- 

parameters in (7) can be uniquely determined from £.  This is one reason why 

we call the elements in £ essential parameters.  The second reason is 

that the actual 5-D motion parameters can be determined uniquely given E, 

and can be computed simply by taking the SVD of E without having to solve 

any nonlinear equations at all.  The third reason is that given the image 

correspondences of eight object points in general positions, the E matrix 

can be determined uniquely by solving 8 linear equations. 

Before giving Theorem 1 (which concerns the uniqueness and the 

computation of motion parameters given the matrix E), let us first 

analyze the matrix E.  From (7), we have 

n 
Az 

Ax 

Ay 

0       1        0 

0 0       1 

1 0       0 

R   - 

Ay 

Ax 

0 0       1 

1 0       0 

0        1        0 

Az 

Ax 

Ay 

Ay 

Az 

Ax 

R   =     G  R (9) 

wnere 0 Az -Ay 

Az 0 Ax 

Ay - Ax o 

(10) 

is  skew-symmetric  snd  contains only the  translation parameters and   R is 

the  rotation matrix.     It   is well  known  in matrix  theory [1]  that  any 

SKew-symmetric  matrix K  must   have  even  rank,   say  2n,  and   that   K,   if real, 

always  assumes  the   following normal   form: 
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K  = Q' 

0 V? 
f, 0 

0 K 
-% 0 

0    % 
-%  o 

(11) 

where  Q is  some orthonormal matrix,  not  necessarily unique  and  them's  are 

real  constants.     Since G in   (10)  is  3x3  skew-symmetric,  we  can  see  from 

the above  that  G must  be  singular,  and  that   there  exist   a  3x3 orthonormal 

matrix Q and  a real number  *f  such that 

o   y 

Jf     0 

0 

(12) 

Eq.(12) will play an important role in the analysis hereafter. 

Let. P = i £ where i=j/^T , then from (10), we have 

P = i«E = i-G-R = H-R 

where 

(13) 

H fi-G 

0 

-i-Az 

i-AY 

i-Az 

0 

•i«Ax 

-i-Ay 

i-Ax 

Mote  that   K is  Hermitian.     Therefore,   (13)  gives  the  polar decom- 

position   [1] of P.     Since  the  polar decomposition of any nonsingular 
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matrix with distinct singular values is always unique [1], we can see 

thatGand R would be unique if ? should satisfy the conditions *:hat 

it was nonsingular and that P*P did not have multiple eigenvalues. 

(* denotes conjugate transpose)  However, we have seen that G is 

always singular, which implies that P is always singular.  Further- 

more, P always contains multiple singular values since 

P -P s R -H -h'R (* denotes conjugate transpose) 

= H*hl-n = fi*(iG)(iG)-R = -lf-G*R 

lf(QT 
0    ^ 

-^    0 
I 0_ 

R*Q. 
V -r 

0_ 

QHQ' 
' o   v5 

-V   o QVR 

Q-R   =  R-Q 
r r Q-R (14) 

and   thus  the  eigenvalues of P P   (or  the  square of the   singular values of 

P)  are    ^   V*,  and  0.     However,  we  shall   show in  Theorem I that   because 

of 'rhe  special   structure  of  G,   once  E is given,   G and   R are  unique. 

III.1   UNIQUENESS  AND ESTIMATION  OF  MOTION  PARAMETERS  GIVEN E   :   THEOREM  I. 

THEOREM   I 

Let   the  SVD  of  E be given  by 

E = uAvT 
(15) 

f-hion    *■ en  tnere are  two solutions for the rotation matr: 
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R = U 
0 -1 
1 0 (16) 

or (17) 

where s = det(U)'det(V) = +1 or -1 

and one solution for the translation vector (up to a scale factor) 

Ax 

Ay 

Az 

a 

^2 I ^^ 

♦l*2 / ♦l^ 

where <j)i is the ith row of E, i = 1, 2, 3, and a is some scale factor. 

Furthermore, although U and V are not unique given E, once a particular pair 

of U and V are selected, (16) and (17) include all the possible solutions. 

However, only one of the two solutions yield positive z in (5a) and (5b). 

Since the object must be in front of the camera, the solution is unique. 

[Proof] 

Let us first verify the uniqueness of 

computational formula for it. 

From (9), we have 

E £T= G  R  RTGT= G  GT= - Gl 

Ax 

Ay 

AzJ 

given E,   and give  the 

Az' + ^y2 

-Ax-Ay 
- Ax-^z 

- Ax-Ay 
Az1 + Ax1 

-Ay-Az 

- Ax-Az 
- Ay-Az 
A^+Ay* 

(18) 



14 

or 
AZ^+AX^:   4>i

r,k 
Ax'+Ay^   ^f^ 

Ax-Ay = -ctT'fe 
AxAz = -"jf^ 
AyAz    =  -fty 

(19) 
(20) 
(21) 
(22) 
(23) 
(24) 

(19)+(20)-(21)  gives 

or 

Similarly, 

Az  =  i  1//r(<f>T^ +<kTi    -^^   (25) 

Ax s + l/T (-^ + *Tcfe   +^T£fe  ^  (26) 

A y = + 1^ ( ^ - fjfk   +$% P  (27) 

Therefore, given E, Ax, Ay and Az are fixed except for the signs. 

When a particular sign for ^z is chosen, the signs for Ax and Ay 

n vector Ay 
[AZJ 

are determined from (28) and (29).  Thus the translatio 

is fixed except for the sign.  Since, as mentioned twice before, 

multiplying E or G with any scalar does not alter the equality of (6), 

Ax 
Ay 
Az 
sea! 

is unique up to a scale factor.  Alternatively, since there is a common 

e factor among the translations. Ax, Ay and Az, we have from (23) and 

(24), 
Ax 

Ay 

Az 

a 

T    T 

L ,  J 
where a is a scale factor. We now proceed to prove that given E, there 

are two solutions given in (17) and (18) for the rotation matrix R with 

only one among the two yielding z in (5a) and (5b) with the same signs 

before and after the motion. 
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From   (9),   (12)   and   (15),  we  have 

t   =  U A VT= G  R   = Q7* 
0      ^ 

-y    o (28) 

Since   P P  =   (i  E* (i  E)  =  ETE,   it   follows  from  (14)  that    f t V^and  0, 

wnicn are  the  squares of the  singular values of P*P,   are  also  singular 

values of E £ and  £ E.     Since,  as mentioned  earlier,  multiplying  E with 

any scalar  will  not  influence  the  equality of  (5)  and  will  only scale  the 

translation  parameters in  G,   we can  always,   for  the  purpose of simplicity, 

set   9> in   (12)  to4 without  losing generality.     Thus   (28)  becomes 

"l 
■"* 

" o -1 
1 .vT = QT- +1 0 

0_ 
Q-R (29) 

By taking Q as UT, and premultiplying (29) with uj we have 

0 -1 
+ 1  0 Q.R (30) 

Let the ith column of V be denoted by Vi, and the ith column of ^he 

product CR be denoted by Qi, where i=1,2,3.  Then (30) gives 

VI 

V2T 

0  0  0 

- Q2 

■h Q1T 

0  0  0 

Thus Q2 =-V1, QI = +V2.  Then it follows from the orthonormality of QR 

that Q5 = + V5.  Thus 

R = Q-Q-R = U-Q-R 



=  U   [+V2   -VI     +V3   ]   =  U 
1 
0 (31) 

where  s  =  +1   or -1.     Since  R is orthonormal  of ^he  first   icind,  we have 

from   (31 ), 
'   0     1      "' 

)-det(V) det(R)  =   1   = det(U)- det( 

=  det(U). s.det.(V) 

0     1 
-1     0 

Thus 
det(U)  det(V)   1   =  s  [det (U )]1-[det(V )]*" 

=   3-1 

]> 

or  s  =  det(U )•det(V).     Although  U and  V are not  unique given  E siuce 

the multiplicity of the  sngular values of E is  2,   we  shall  show later 

that aue  to  the  special  structure of G,   the  solution  for  R is either 

given  by  (31 ),  or  by 

R  = U 
0 -1 
1 Q r (32) 

and no others.  Furthermore, only one of (31) and (32) can be accepted. 

Let R1 and R2 be two orthonormal matrices of the 1st kind (i.e., 

det(RI) = det(H2) = +1 and not -1) that satisfy (9), i.e., 

E = G-R1 = + G-R2 (33) 

The  "-"  sign in   (33)  comes  from the   fact explained  earlier  that  a  sign 

change of E will  not  influence  the equality of  (6).     From  (33)  and   (12), 

tnere  exist  two orthonormal matrices Q1 and  Q2,   not necessarily equal, 

sucn that 

Ql' 
0     1 

-1     0 Q1-R1   =  Q2 
0     1 

-1      0 Q2-R2 (3^) 
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where n   -   n ■ 
Q1 = ± Q21 

0 
-1 Q2    (35) 

Firs*-, we show that Q1 and Q2 h ave to be related by following 

Q2 = 
+ i 

Q1 

wn ere W is a 2x2 orthonormal matrix.  From (9) and (12) with ^ set t< 

1 as explained earlier, we have 

£'£T= G R RTGT= - G 

Qi 
" 0 1 ") r " 0 i •■ ) 1 
-1 0 

0_ 
ai}j -i 0 

0_ 
Qi. =  QiT 1 

0. 
Qi   (36) 

iince £•£ is fixed (including the sign) given ± £, we have from (36), 

QI QI = Q2 Q2 (37) 

Premultiplying   (37)   by Q2 and  postmultlplying  by QI  give 

Q2-Q1 Q2-Q1 (35) 

Let   Q2-Q1 ,TA 
qi       q2       q3 
q^      q5      qo 
q7      q8      q9 

,   then  from   (36), 

"q 1 q 2 0 
q^ q5 0 

.q 7      q 8       0 

qi       q2       q'S 
q^      q5      q6 

0 0 0 

which implies that     q3  = q6  = q7 = 0, or 

Q2-Q1T = 
qi       q2 0" 
q^       q5 0 
_0 0       q9 

I    1 
=       1 w 

1 q9 
(59) 
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win ere w ^ r ql  q2 
qM qb 

(MO) 

(alternatively, one can show from (35), after some similar derivation 

as above, that M has to be either ±1    o" or 0   +1" 
0  ±1 + 1      0 

But since (40) 

is sufficient and handy for all the later purposes, it is simpler just 

to maintain (40)).  Since Ql and Q2 are both orthonormal, it follows 

from (39) that W is orthonormal and q9 = +1•  Therefore, 

G2 
+ 1 

Qi (41 

Next,  we  substitute   (41)   into   (34)  to obtain 

0   1 
Ql" t-1   0     |Q1   K1   = Ql 

rf 
+ 1 

" 0   i 
-1   0 

+1 
Ql   R2  = Ql WTK W Ql   R2   (42) 

;here  K aj 0   11, 
L-i oj 

Since  w is defined  by  (40),  we  have 

.JK W 0   1     ql   q2 
■ 1   0     q3 q4 

•q3 q1   + q3 q1 

•q 4 q 1   + q 3 q 2 
|q1  q^l 
|q2 q5j 

f"   0 det(wl] =  f 0     ll       or      To     -f| 
L-det(w) 0     j      L-1     0] L1       0J 

-q3 q2  + q 1  q4 
-q2 q4  + q2 q4 

Thus   (42)   gives 
Ql 

i 
0 Q1.R1   =  Ql 

'0 
-s 

s 
0 •Q1-R2 (43) 

where  s = +1   or -1.     Preraultiplying   (43)   by Ql  and  postmultiplying  by 

R1-Q1   give 
0     1 

-1      0 

Let   B  =  Q1-n2-R1^QiT^ 

/ 

0 1 
0 

0. 
s(Qi-R2-Ri^Q1T) 

E2T 

B3T 

(44) 

(45) 
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in us 
" 0 1   " 0 1 rsr 
-1 0 =  s -1 0 B2T - -sBiT 

_ 0 _ 0 B3T ^0  0   0 

Hence 
B2 s s[0   1   0] 

B1T=-s[-1  0  0] = 3[1   0  0] 

(46) 

(47) 

Since Q1, R1 and R2 in (45) are orthonorraal, and that 

det(B) = det(Q1).det(R2)-det(r1 )-det(Q1) = {aet{Q-\)f'=   (±1)*= 1 

we see that B is orthonormal is orthonormal of the 1st kind.  This 

fact, togetner with (46) and (4?), imply that 

B5T= [0  0  1]    or   B(= Q1-R2-R1^Q1T)= 

Thus    R2 = Qi' Q1 Rl 

For s = +1 ,   R2 = QI -I-QI-RI = Rl (48) 

For s = -1,   R2 = Qi 
-i 

-1 QI Rl (49) 

Therefore, given £, if we regard Rl as a reference solution, then should 

there be any other solution for the rotation matrix, it must satisfy 

(49).  We now show that although QI is not unique, (49) remains fixed 

for different choices of QI. 

Let C2 be another orthonormal matrix that satisfies (35) or 
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(36),   and   let   R3  = Q2- 
-1 

Q2-R1,   then  from  (41 ) 

Hj   = Q1. 

=   Ql- 
-1 

+ 1 

-1 

+ 1 
Q1-R1   = QV 

+ 1 
•Q1-R1 

•W w 
+i 

Q1-R1 

(50) 

or  = Ql' 
-1 

Q1-R1   =  -R1 (51) 

(51)   is obviously not  a  solution  since  it  implies that det(R3)  =  -1, 

not  +1.     But   (50)   is exactly the  same as   (49).     Note  that   (49)  implies 

that 

Ri   = Ql 
-1 

-1 Q1-R2 

i.e., no matter which solution is chosen as the reference, the other 

solution must be given be (49), of course. 

It is now obvious that (16) and (17) are the only possible 

two solutions despite the fact that U and V are not unique, since if 

we regard (31) as the reference solution RI, then the only other 

solution must be given by 

R2 = tf -i ■RI = -1 Q-U 

-T u • 
-1 

•V' (since Q = UT) 
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0 -1 
1 0 

which is identical to (32). We now show thai 

among the two solutions, exactly one of them must yield z with opposite 

signs before and after the motion. 

Unce the E matrix in (6) has nothing to do with the geometry of 

of the object surface, for a particular point with image correspondence 

(X,Y)—►U'.Y'), we can imagine that there are two planes passing 

through this point neither of them containing the origin.  In section 

IV, we snail show that given the image correspondences of ^he points on 

two planes, neither of whicn containing the origin, -he E matrix is fixed, 

In [3], it was shown that there are two solutions for the rotation matrix 

given the image corrrespondences of one plane only : 

R1 = 01 ■ s^  s««> • 02 (52) 

R2 = 01 
<*       (9 
SA      sol 02 (53) 

where 01 and 02 are some 3x3 orthonormal matrices.(Note that the rows 

of 01 and 02 are permutated for convenience.) There are two other 

solutions corresponding to k<0 not stated in [3](see [3] for the defi- 

nition of k) because it was proved in [31 that when k<0, the object 

points move from the front to the back of the camera, or vice versa.  It 

can be shown using exactly the same procedure as in Theorem II of [3] that 

these two other solutions are 

Ri ' = 01 s^ -srf 02 (54) 

ind R2' = 01 -s(S -sel 02 (55) 
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Since  the  E matrix  is  fixed,  it  was  proved  earlier  in  this theorem 

that  only two  solutions among  the   four  in   (52)-(55)  may exist, and  they 

must   be related  precisly by  (49).     There are only two  such possibilities, 

one  is 

HI '  =  01 -1 il'RI (56) 

and the other is 

R2 = or. 01-R2 (57) 

Therefore, the two solutions are either R1,R1' or R2,R2'.  In either 

case, one of the solution must be one among (56) and (57), which corr- 

esponds to the case when k < 0 and the object points must move from the 

front to the back, or from the back to the front of the camera, as was 

indicated above.  We have thus proved that only one among (16) and (17), 

or equivalently (48) and (49) is acceptable. 

»  END OF PROOF FOR THEOREM I  * 

III, ESTIMATION OF E GIVEN 8 IMAGE POINT CORRESPONDENCES. 

Given eight, image point correspondences (Xi,yi)—^(Xi',Yi'), 

for i=1,...,6, we have from (6), 

XI 'XI XI 'Yl XT Yl 'XI Yl 'Yl Yl' XI 
X2'X2 X2'Y2 X21 Y2 'X2 Y2'Y2 Y2' X2 
X3'X3 X3'Y3 X3, Y3'X3 Y3'Y3 Y3' X3 
X4'XH X4'Y4 X41 Y4'X4 Y4'Y4 Y4' X4 
X5'X5 X5'Y5 X5, Y5'X5 Y5'Y5 Y5' X5 
X6'X6 X5'Y6 X6' Y6'X6 Y6'Y6 Y6' X6 
X7'X7 X7'Y7 X7, Y7'X7 Y7'Y7 Y7' X7 
Xo'XS X8'Y8 X8' Y8'X8 Y8'Y8 Y8' X8 

Yl 
—    - 

el _1 

Y2 e2 -1 

Y3 e3 -1 
Y4 e4 -1 

Y5 e5 z -1 

Y6 eo -1 

Y7 e7 -1 

Y8 e8 -1 
_ w       ^ 

(58) 
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Therefore, el,e2,...,e6 can be estimated by solving a system of linear 

equations expressed in (58).  The conditions when the ei's are unique 

(or equivalently when the 8x8 matrix in (58) is nonsingular) are stated 

and proved in Lemma I and Theorem II in Sec. IV.  In practice, given 

eight image point correspondences, one first substitute the image point 

coordinates into the above 3x8 matrix and check its determinant.  If it 

is nonzero, the matrix E can be determined by solving (58) for the ei's. 

Next the SVD of E is computed and used to calculate the actual motion 

parameters by the simple formula described in Theorem I. 

IV.  RESTRICTIONS ON THE SPATIAL DISTRIBUTION OF OBJECT POINTS TO 

ENSURE UNIQUENESS:  LEMMA I AND THEOREM II. 

Multiplying (5) by z and z' gives 

z' [X' Y'  1] a • z- 

1 
L -1 

(59) 

From (3) and (59), 

[x'  y'  z']- 

= 0  or 

[x'  y'  z']-G-R. 

= 0 (60) 
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Let 
x 
y' be  transformed   from with  some reference rotation matrix 

fto  and   translation vector  To  = 
'Axo' 

Ayo 

^zo 
, ie., 

rto +    To   =  Ro 

x' " Axo 

y + Ayo 

.z. Azo 

(61) 

0 Azo 

Let   Go   = -A^o 0 

Ay0 - Axo 

•Ayo 

Axo 

o 

and   Eo  = Go • Ro 

The  purpose  of this  section  is  to   investigate how    many     image 

point correspondences are needed  to  ensure  that  there  are no other 

solutions  to  G and   R as  factors  of  E in   (9)   than   the  reference  Go  and 

Ro  that can  satisfy  (59)   (or   (60)),  and  to  state  the    conditions 

or  restrictions on  the  spatial  distribution of the object   points  under 

observation  in order  to  ensure  unique  solutions. 

Substituting   (61)   into   (60)  gives 

(   [x       y       z]-Ro  + To')- £• [ x       y       z ] • Ro • E'" "x" ' *x 

y +    To-E- y 

_z< _ z 

[ x  y  z   1 ] 
T 0 

Ro-E     0 
0 

0  0  0  0 

Px" fCx y z   1] V )   [TaE 0] "x" 
y + 0 

■ y 
z 0 z l_1_ I .i_ i , i. 
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where 

[x y z i] T 
Ro'E 

: o' 
: 0 

"x" 
y - 

Cx    y 

: o 
:"G 

z 
1 

e 
c Ro-E [ 

o~ 
0 

^ T i0' 
Ro-GR :  0 

•TJE- 
0 

•(T 
....T-..

;
..9. 

_ToGR :  0_ 

1] c x 
y 
z 
1 

(62) 

(63) 

Note  that  if C is  skew-symmetric,  then   (62)   is always  satisfied  regard- 

less of what  x,y,z or  X,Y are,   since 

2-[x    y    z     !]■ ^x    y    z     i]-C 

[x    y     z     1]-C. [x    y 1]- 
.Tr 

'[x    y    z     1] 
vT 

Cx    y    z     1]-C' x 
y 
z 
1 

I-   J 

[x    y    z     IK-C)- 

It   is to  be proved  in  Lemma I that  C is  skew-symmetric   if 

and  only if £  = Eo   (then according  to  Theorem  I,   the  solution  for  the 

motion parameters is unique;.     The  purpose of Theorem II  is to  prove 

that   the matrix  C in   (63)  has to  be  skew-symmetric   if the object  points 

under observation do not  reside on two  planes with one of the  two  planes 

containing  the origin,  nor do they lie on  a cone  containing  the origin. 

we note   that   five or  fewer  points  in  space can always  be  traversed   by 

two  planes with one  plane containing  the origin,  and  that   six  or  fewer 
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points in space can always be traversed by a cone containing the origin. 

A minimum of seven points is needed to violate '■'nese two conditions. 

Therefore, it follows from Theorem II and  Lemma I   that seven points in 

general positions can ensure a unique solution for the motion parameters. 

LEMMA I 

The necessary and sufficient conditions for C defined by (63) 'ro be 

skew-symmetric is that 

or 

fi = Ro 

R = Q" 
-1 

Q Ro 

(64) 

(65) 

where  Q is a  5x3  orthonormal matrix  such that 

ma 

G   =  Q1 

"Ax" Axo 

Ay = 0^ Ayo 

A 2 Azo 

(65) 

(67) 

where 06 is some constant. (According to Theorem I, (65) and (67) are 

equivalent to E -0LE.0) 

[Proof] 

If  C is  skew-symmetric,  then  it  is necessary from   (63)  that 

Ro-G-R   =  -(Ro   G R)T 
;68) 
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and 

or 

To-G-R = [0  0  0] 

H^G^To = 

.
0
J 

(68) gives 

RoT-G-fi = - RTQTRO = R-G'Ro 

(69) 

Substituting (66) into the above gives 

no Q 
0 
1 

1 
0 

q. 
Q  R   =  RT0T 

0 
-1 

1 

0 Q Ro (70) 

Preraultiplying   (70)  by QR and  postmultiplying  by R-Q'give 

or 

where 

Q R RoTQT 
" 0     1     ' 

-1      0 . 
" C     i 
-1     0 3  Ro   RTQT 

c - 0. 

L 
~   0     1       ~ 

-1      0 
0 

= 
~ 0     1 
-1     0 

0_ 
• J 

- -I 

L ^ Q  R   RoT QT^ 
V       J2 
J4       j5 

J3 
j6 

J7 J8 J9 

From   (71 )  and   (72) 

(71) 

(72) 

■J2 jl 
-J5 j4 
•j8      J7 

0 " 
0 z 

0 

J2 
•jl 

0 

J5 js" 
-i* -J"7 

0 0 

Thus 

and 

j7   =  j8   = 0 

j2   =  -j2       or  j2 

j4   =  -jH       or  j4 

J1   =  j5 



Then   L becomes 

L   = 
J1 o       j3 

0 0 j9 
(73) 

(72)   implies  that   L is  orthonormal  of the   1st   kind   since  R,   Ro,   Go  are 

ortnonormal  and  that  det(L)  =  det.(Q)   det(R)  det(Ro)   det(Q)  =   (deMQ))*- 

=   (±1;  s   1.     Taking  the  inner  product of the   1st   and  3rd  rows of L in 

(73),  and  equating  it  to  zero gives    J3-J9   = 0.     Since  j9   / 0   (other- 

wise  the  3rd  row of L would  be  zero),   j3=0.     Similarly,   j6   = 0.     With 

these and   the   fact  that det(L)  =   1,   we  conclude  taht  L can  assume only 

the   following  forms: 

L   = or L  = -1 

From   (72), 

R   = Q* Q-Ro   =  Ro 

or 

R   =  Q' -1 Q-Ro 

Thus (64) and (65) are the necessary conditions for C to be skew- 

symmetric.  The next thing is to verify (67). 

Premultiplying (69) by R gives 

28 

or 

GT-To = 

0     Az 

•Az     0 

Ay   -Ax 

^y Axo "o" 

Ax Ayo = 0 

0 Azo 0 
1-   - 
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which gives 
Az Ayo - AY-A?

0
 = 0 

-Az-Axo + Ax-Azo = 0 

Ay-Axo - Ax-Ayo = 0 

Let   oC =   Az/Azo   .     then   Ay =<9<;Ayo   >     Ax  =o(.-Axo   •     Kence 

"A* Axo 

Ay s Ayo 

Az /\zo 

which is  the  same as   (67).     The  E matrix  then  is equal  to  Eo   (i.e., 

unique)   up  to  a scale  factor  since 

E  = G-R 

o       Az       -Ay 

■ Az o ^x 

Ay      -A^        0 

R  =o6 Go -Ro  = o(-Eo 

if  (64)   is used,  or 

Go  Q Q  Ro  = o<. QT 
0     1 

■1     0 Q-Q 
-i 

Q Ro 

oU1 
0 -1 
1 0 Q  Ro     =  -©< Eo 

Lf  (65)  is  used. 

[Sufficiency part) 

From the  structure of C in   (63),  it  is obvious  that  in order 

for  C to  be  skew-symmetric,  the  row vector To-G-K on the  4th row has 
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to  be equal   to  the negative of the   transpose of the  4th column,  which 

is a  zero  vector,  and  that   the  3x3  matrix  Rtf-G-R    on  the  upper-left 

corner  of  C must   be  itself skew-symmetric.     With   (67),   To-G-R  in   (63) 

becomes 

To-G-R   =   [^xo       fcyo       Azo] 0 ^zo "A^0 

- Azo o A™ 

Ay0      - Axo 

[-Ayo-Azo-1-Azo Ayo     Axo-Azo-^ZOA^0      -Axo-Ayo+AyoAxo^ R 

=   [0 0 0]  R   =   [0 0 0] (74) 

We now proceed  to  show that  with  R either given  by  (64)  or by  (65),  the 

3x3  submatrix  To-G-R  in  C has  to  be  skew-symmetric. 

With   (64),   Ro-G-R in   (63)  becomes 

Ro-G-R   =  Ro-G-Ro   =  Ro-(-GT)-Ro  =  -\,Ro  G Ro ^ (75a) 

On the other hand, with (65), RJ-G-R in (63) becomes 

T       T 
Ro-G-R = Ro-G-Q 

-1 
-1 Q-Ro Ro -Q 

0  -1 
-1   0 •Q-Q Q-Ro 

Ro-QT 
0 -1 
1 0 Ro = -Ro-G-Ro 

Thus 

(Ro-G-R) = (-Ro-G-Ro) = Ro-G-Ro -RoT-G-R (75b) 

(75a)   and   (75b)   shows  that  either with  (64)  or   (65),   Ro^G-R is  skew- 

symmetric.     This  fact,  together  with   (74),  imply that   C in   (63)   is 

skew-symmetric. 
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*  END OF PROOF FOR LEMMA I  * 

THEOREM II 

If [X' Y'  1 ] £ 0 is satisfied by the image point correspondences 

of a group of object points not lying on two planes with one plane containing 

the origin, nor on a cone containing the origin, then the 0 matrix in 

(63) has to be skew-symmetric. 

[Proof] 

From (52), which is the necessary condition of (6), we have 

[x  y  z  1] 0 [x  y  z  1] C x~ f 
y = 0 
z 
1 ) 

or 
[x  y  z  1]( C + 0') 

y 
z 
1 

= 0 

From   (63) 
mm 1 

C  + CT = 
Ro^E  + E^Ro 

i 

1 ETTO 
_ i_ _  

To^G-R i 
i 0 

mm i 

(76 

0 + CT= 
Ro^G-R + R^GT-Ro  '  R^G^To 

To•G•R 

Substituting   (12)   into  the  above gives 



32 

+ CT = 

*!■<? ■R   - Rr-J G-Ro .Rr-QT. 
0     1 

-1      0 •0 -To 

To-Q 
1 
0 Q-ft 

RT-QT Q-R-Ro'-QT 
0   1 ~ 0 

-1   0 - -1   0 
0_ 0. 

ToV 
" 0   i    n 

-1   0 
0^ 

•Ro-RT-QT 
~0 1 
-1 0 

0 
•Q-To 

OOll 

1 o 
Q-R 1 o 

1 o 

0     0     0 

1 
1 

i 1 

Q-R 

0     0 

-iTr   .- 
0   1 

-1   0 
"o 1 
-1   0 •MTi   - 

0   1 
-1   0 

0. L     o 0 
•To' 

io 
0   1 

■1   0 
0. 

Q-R 

0     0     0 

0 
0 
0 

(77) 

where  M    ^ Q-R-RoT-QT 

To'^Q-To  ^ 
t i 
t2 

Let     iM  = 

ml m2 ra3 

ni4 rrS mo 

tD?       m8       ra9 
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Then   (77)  becomes 

C   + C 

Tr- 
Q a 2 rn4 m5  ml m6 -t2 

m5-ra1 -2  m2 -m3 t i 
m6 -m5 0 0 

-t2 11 0 0 

Q R 
(78) 

Let   the  original  cordnate  system be rotated  with  R-Q such that 

=  Q-R' (79) 

then   from   (76)  and   (78), 

[ xc       yc       zc       1 ] • J • =  0 (80) 

wnere 
2 m4 ra5-m1 m6 -t2 

J = m5-ra1 
mo 

-t2 

-2  m2 
-m3 
ti 

-m3 
0 
0 

ti 
0 
0 

(30)  gives 

(81) 

2[m4. x^   (m5-ml )xc;yc-m2-yc
2--t2-x<:+ t1.^+(m6.^- m3-yc)ze]   =  0     (32) 

or 

z=   [m4.x^+(ra5-m1)xc;yt-ra2-y(:
J--t2-xc+ti.yc]/(m6.x<rm3-yc) (83) 

Unless  J in   (31)   is identically zero,   (82)   indicate  that all  the 

points must   lie  on  a quadric   surface  of some  type  containing  the 

origin.     However,   (83)   implies that  zc is a   single-valued  function 

of xc   and  yc   unless m6.x^- m3.y(:=  0.     There are  two cases to  be 
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discussed.     The  first   is when rn5-xc-  ra3-ytdevides the  numerator.   Then 

(83)  must  be a   1st  order  polynomial,   say a.-x^+ b'yc+ c.     Thus   (82) 

becomes   (zc- a-x^-  b-yt -  c)'(ni6'3{c-  mS-Yc)   =  0,     which  implies  that 

in  the new coordinate  system,  all  the  points must   lie on two  planes 

with one  plane  vertical  and  passing  through the origin.     Since,  as in 

(79),   the new coordinate  system  is obtained  by rotating  the old  coor- 

dinate  system around  an axis  through the origin,  these  two  planes must 

still  be  two  planes with one  plane  passing  through the origin  in  the 

old  coordinate  system except  that  it  is not  necessarily vertical. 

The  second  case  is when mS-x^- m3-yt   does not devide the numerator  in 

(83).     In  this case,  zc  must  be +ooor-§- (i.e.,   indeterminate)   along 

the  line mo-x^ m3-yc=  0,   while  for other values of  (xc,yc),   zc has  to 

be  single-valued.     It   is well  Known that  any quadric  surface must   fall 

in one of the  following  categories  [29]: 

(1) imaginary quadric   surface   (e.g.,x^+ ye_+ zc=  -1) 

(2) ellipsoid 

(3) hyperboloid of one sheet 

(4) hyperboloid of two sheets 

(5) elliptic paraboloid 

(6) hyperbolic paraboloid 

(7) elliptic cylinder 

(8) hyperbolic cylinder 

(9) parabolic cylinder 

(10) a cone 

(11) two planes 

Since  za is  single-valued,  the  surface expressed  in   (83)  cannot  be 
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ellipsoid  or cylinder of any type.     Paraboloid  also  is not   possible 

since  zc is oo or  indeterminate  along  the  line rn5-xc-m3-yc =0  and  as 

can  be  seen  in Fig.   2 and  3,   no  such possibility can  exist   either 

for  the elliptic  paraboloid  or hyperbolic  paraboloid.     Kyperboloid 

of one  sheet   should  be excluded   for consideration  since,  as is depicted 

in  Fig.   4,   this  type  of surface cannot  be  single-valued  in  Zg..     It 

might   seem that  hyperboloid  of two  sheets  in Fig.   5 with one of the 

separating  hyperplanes vertical  to  the   (x^.y^)   plane and  containing  the 

zcaxis could  be  qualified   since  it   is  single-valued  in  zc   except  along a 

line  passing  through origin,  where  zc is ±oo.     However,   since  the  surface 

must  contain  the  origin  as was explained  earlier,  one  sheet of the   two 

in  Fig,   5 must   touch the vertical  separating  hyperplane.     But   it  is well 

Known  in geometry that  if a hyperboloid  intercepts  its  separating  plane, 

it must  degenerate  into  a cone  as depicted  in  Fig.   6,   in  which case  the 

intersection must  be  the  ZQ  axis.     Therefore we conclude that  unless  J 

in   (81)   is a  zero matrix,  all  the  points must,  either  lie on two  planes 

with one  plane containing  the origin,  or on a cone  passing  through the 

origin.     But,  as was defined  in   (78), 

C  + C 

tnerefore, 

or 

-T 

Q R       10 

0     0     0   11 

C  + CT=  0 

C  = -C 

Q H        |0 

0     0    0   11 

wn icn means that  C nas to  be sxew-syrametric 

*     END OF   PROOF  FOR  THEOREM  II     * 
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Fig. 2  Elliptic Paraboloid can be single-valued in 2^, but cannot 

diverge along a straight line. 

Fig. 3 Hyperbolic paraboloid can be single-valued in %  but it cannot 

diverge along a straight line. 
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Fig. 4 Hyperboloid of one sheet cannot be single-valued in z^ 

Fig- 5 Hyperboloid of two sheets with vertical separating hyperplane, 
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tmm 

Fig. 6 If a hyperboloid intersepts its separating plane, it has to 

degenerate into a cone. 
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COROLLARY 1 

Given the image correspondenoes of two planes not passing through 

the origin, the motion is unique. 

[Proof] 

Since neither a cone nor two planes with one plane passing through 

the origin can contain two planes not passing through the origin, it 

follows from Theorem II that the C matrix in (63) has to be skew- 

symmetric.  Then the uniqueness of the motion parameters follow direct- 

ly from Lemma I.   Q.E.D. 

COROLLARY II 

Given the image correspondences of six points with four points on 

one plane not containing the origin, four points on the other plane also 

not containing the origin, and two points common to the above two groups 

of four points on the intersection of the two planes can ensure unique 

solutions for the motion parameters. 

[Proof] 

Since as was proved in [20], the image correspondences of four 

points with none of the three points colinear determine the image motion 

of tne whole plane, we can see that the six points with four points on 

one plane, four on *-he other plane can determine the image correspondences 

of two planes not containing "he origin.  Therefore, it follows from Coro- 

llary I that the motion parameters are unique.  Q.E.D. 
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COROLLARY III 

The image correspondences of four points on a plane not passing 

through the origin and two other points not on this plane determine the 

motion parameters uniquely. 

[Proof] 

Obviously, on the very plane determined by the four points, whose 

image correspondences can be determined from these four points according 

to [20], there always exist two points that are coplanar with the other 

two points not on this plane.  Therefore, it follows from Corollary II 

that the motion parameters are 'unique.   Q.E.D. 

COROLLARY IV 

Given the image correspondences of seven or more points not 

traversable by two planes with one plane containing the origin, nor by 

a cone containing the origin, the motion parameters are unique. 

[Proof] 

If one of the image points before motion is chosen to be at 

the origin, which can always be done, then should there be a cone con- 

taining the origin passes through all the points, one of the separating 

hyperplane of the cone already passes through the z axis.  Therefore, 

the rotation matrix QR in (79) need only rotate the original coordinate 

system around the z axis in order to arrive at (81), or 
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WJ 

where «v is some 2x2 orthonormal matrix.  Then from (78) 

-T  r- 

c + c1 
M 

-1 
1 

J + 1 

I +raD 

1 +mj 

1 

-t2 

11 

+rnD 

_^ ' cL 

+mo 

11 0 

0 

0 

where 
N * 

2 • m4     m5 -m 1 

mS-ml     -2 m2 

Therefore, even in the original coordinate system, the surface is 

si-ill given by the equation in the form of (82),  Since (32) contains 

seven,terras with six effective coefficients, there is always a unique 

cone containing the origin that passes through six points in general 

positions, while no such cone exists that contain the origin and passes 

through seven points in general positions, nor can two planes with one 

plane containing the origin.  Thus we conclude that given seven or more 

image point correspondences in general positions, ^he matrix C in (63) 

has to be skew-symmetric and the motion parameters can be uniquely 

determined.       Q.E.U. 

Since Corollary IV only gives the sufficient condition for unique- 

ness, even if the seven points are traversable by two planes with one 
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plane passing through the origin, or by a cone containing the origin, 

the motion parameters might still be unique in some situations.  For 

example, if six among the seven points satisfy the condition stated in 

Corollary III, then the motion parameters are unique even if there may 

be two planes passing through these Suven points with one plane contain- 

ing the origin. 

From (82), the criteria for whether there exists a cone 

containing the origin that passes through n points is whether the 

following n by 7 rectangular matrix has full column rank or not. 

xl 
X<i 

xl-yi 
x2.y2 

yi xl 
x2 y2 

zi-xi 
z2-x2 

z^y1 
z2y2 

xn xr,yn yn xn yn zn-xn znyn 

However, since only the image coordinates are given, the only useful 

criteria available is whether or not the 8x8 matrix in (58) is non- 

singular or not.  If it is nonsingular, one can solve for the E matrix, 

compute its SVD, and tnen use the formula in Theorem I to calculate 

the actual motion parameters.  The following two corollaries state the 

necessary and sufficient conditions for the 8x8 matrix in (58) to be 

singular. 

Corollary V 

Given the image correspondences of eight points among which more 

than six points are coplanar, the 8x8 coefficient matrix in (58) is 
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singular. 

[Proof] 

Let H be defined as the 8x8 coefficient matrix in (58), i.e., 

H - 

XI'XI XI 'Y1 XI7 
YI'XI YI'YI Y1' XI Y1 

X2'X2 X2'Y2 X2' Y2'X2 Y2'Y2 Y2' X2 Y2 
X3'X3 X3'Y3 X37 

Y3'X3 Y3'Y3 Y3' X3 Y5 
X4'X4 Xi|'Y4 Ik' Y4'X4 Y4'Y4 W X4 Y4 
X5'X5 X5'Y5 X5' Y5'X5 Y5'Y5 Y5' X5 Y5 
X6'X5 X6'Y6 X6' Y6'X6 Y6'Y6 Y6' X6 Y6 
X7'X7 X7'Y7 X77, Y7'X7 Y7'Y7 Y7' X7 Y7 
X8'X8 Xc'YS X87 

Y8'X8 Y8'Y8 Y8' X8 Y8 

(84) 

We shall prove that if at least seven among the eight points are coplanar 

in the object space, H is singular.  Since interchanging the rows of H 

will not alter the singularity of H, we can assume without losing gener- 

ality that the first seven object points corresponding to the first seven 

rows of H are coplanar.  Let Hz be defined as 

Hz =• 

xl'xl 

xZ'xZ 

zl-zlf 

xl'yl 

x2'y2 

zlvV 

xl'zl 

xa'zZ 

H (85) 

Z8-Z81 

yl'xl  yl'yl  yl'zl  zl'xl  zl'yl 

y2,x2  ya'yZ  y2,z2  y2lx2  z2fy2 

xS'xS  xS'yS  x8lz8  yS'xS  yS'yS  yS'zS  z8'x8  z8Iy8 
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From (85), 

det (Hz)  = 
8 

( n zi zi') • det (H) 
i=l 

(86) 

Since the object points must be in front of the camera lense in order to 

be imaged,  zi and zi' are greater than 1 (the normalized focal length) 

for i = 1, ..., 8.  Therefore, from (86), det (Hz) = 0 if and only if 

det (H) = 0, i.e., H is singular if and only if Hz is singular.  We now 

prove that the first seven rows of Hz must be linearly dependent. 

Let the 7x8 submatrix of Hz corresponding to the first seven rows 

be denoted by B.  Since the first seven points are assumed to be co- 

planar, from [3], we have 

XI 

yi' 

Lzi- 

for i = 1, ..., 7, where 

k A 

XI 

yi 

zi 

(87) 

al a2 a3 

a4 a5 a6 

a7   a8   1 

ai's are the "pure parameters" defined in [2] and [3] 

k is some constant. 

Let D be defined as 

2 2    2 
xl yl   zl   xl-yl  xl-zl  yl-zl 

2 2    2 
x2 y2   z2   x2.y2  x2'z2  y2>z2 

£ k 

x7^  y7' z7 x7.y7  x7-z7  y7«z7 
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Therefore, 

al 0 0 a4 0 0 a7 0 

0 a2 0 0 a5 0 0 a8 

B D 0 0 a3 0 0 a6 0 0 A 
D 

a2 al 0 a5 a4 0 a8 a? 
a3 0 al a6 0 a4 a9 0 

0 a3 a2 0 a6 a5 0 a9_ 

(88) 

Since, as can be seen in (88), B is the product of a 7 x 6 matrix D and a 

6x8 matrix L, the column and row rank of B can be at most 6.  To elaborate 

on this, since D is a 7 x 6 matrix, the SVD of D is given by 

where 

D =  U 
0 0 0 

Xl 

X2 

X i s are the singular values of D 

U is a 7 x 7 orthonormal matrix 

V is a 6 x 6 orthonormal matrix. 

Then (88) becomes 

D 

X6 

B  =  U 

=  U. 

A D 

0 0 ... 0 

A 

0 0  0 

T 
)   VD ' L 
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or 

T 
UD • B 

AD ' VD  ' L 

I 0 0 .... 0 
(89) 

T 
Since UD is orthonormal, the row rank of B is the same as that of Un*B- 

T 
But the last row of U

Q*B is zero, as can be seen in (89).  Therefore, the 

row rank of B can be at most 6.  Since B is the 7x8 submatrix of Hz, one 

of the first seven rows of Hz can be expressed as a linear combination of 

the others. Therefore, Hz is singular, which implies that H is singular. 

Q. E. D. 

Corollary VI 

If the 8x8 coefficient matrix H containing the image correspondences 

of eight points in (58) is singular, then either seven or eight points are 

coplanar in the object space, or the eight object points are on a cone 

containing the origin. 

[Proof] 

Corollary IV implies that if the motion parameters are not unique, 

or equivalently the E matrix is not unique and H in (58) is singular, the 

eight points are either traversable by two planes with one plane containing 

the origin, or by a cone containing the origin.  This conclusion is certainly 

correct but can be made stronger since there are cases when the eight points 

are traversable by two planes with one plane containing the origin while 

the motion parameters are still unique. According to Corollary III, so long 

as  four among the eight points are on a plane not containing the origin, and 

two other points not on this plane determine the motion parameters uniquely. 

Obviously there are only three possibilities for this to happen when the 

eight points are traversable by two planes with one plane containing the origin; 
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(1) Six points are on a plane not passing through the origin, and two 

points on another plane containing the origin. 

(2) Five points are on a plane not passing through the origin, and three 

points on another plane containing the origin. 

(3) Four points are on a plane not passing through the origin, and four 

points on another plane containing the origin. 

This leaves only the following two cases which have been shown in Corollary 

V to be the sufficient conditions for H to be singular: 

(1) Exactly seven points among the eight are on a plane not passing through 

the origin. 

(2) All the eight points are on a plane not passing through the origin. 

Therefore, the assertion of the corollary is justified. 

Q. E. D. 

The results developed in this paper can also be applied to the stereo 

imaging problems in photogrammetry and computer vision without assuming the 

relative orientation of the two cameras since pictures taken at two time 

instances can be regarded as taken by two cameras at one instance.  After 

the motion parameters are computed using the formula in Theorem I, the 

surface structure of the object can be determined up to a common scale 

factor by computing the z coordinates using (5a) or (5b). 

V.  PURE ROTATION AND PLANAR PATCH MOTION 

Note that when the object undergoes pure rotation around an axis 

through the origin. Ax = Ay = Az =» 0, and therefore, from (7), E is a zero 
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matrix.  The converse is also true since if E = £ (0_ stands for a 3 x 3 

T    T 
zero matrix), then from (9), G = ER = OR = £, i.e., Ax = Ay = Az = 0. 

In this case, the results described earlier in this paper cannot be applied 

since (5a) and (5b) become z = 0/0, and are no longer meaningful.  However, 

it is to be seen in the following that the image motions for the case of 

three-dimensional pure rotation are equivalent to the image motions of any- 

planar patch undergoing three-dimensional pure rotation with the same rota- 

tion parameters Q, nl, n2, and n3.  This means that even if the object 

surface is nonplanar, the motion parameters can still be computed using the 

results described in [3] for the planar patch motion.  Furthermore, since 

the motion parameters have been proved to be unique for a rigid planar patch 

undergoing three-dimensional pure rotation (see Theorem III in [3]), the 

motion parameters for any curved surface undergoing three-dimensional pure 

rotation are also unique. A simple test for detecting the presence of pure 

rotation and the planar patch motion will also be described. 

By setting Ax, Ay and Az in (4a) and (4b) to zero, we have 

i    rl « X + r2 ♦ Y + r3 
"r? • X + r8 • Y + r9 

(90) 

r4 • X + r5 • Y + r6 
Y'  = 

r7 • X + r8 • Y + r9 

It can be seen from [2,3] that (90) gives the image mapping (X,Y)-> (X*^) 

of a rigid planar patch undergoing 3-D motion with the 3 x 3 A matrix 

containing the pure parameters in [2,3] being 

A = r^1 R (91) 

Let Ua + R, Va = I, Aa = r"1 I.  Then (91) becomes 

A = Ua * Aa ' V (92) 
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Since R and I (and thus Ua and Va) are orthonormal, (92) is the singular 

value decomposition of A with three identical singular values.  Therefore, 

according to Theorem III in [3], (90) gives the image point correspondences 

of any rigid planar patch undergoing 3-D pure rotation with rotation matrix R. 

We now describe a simple procedure for detecting whether the object 

points are on a planar patch or are undergoing 3-D pure rotation (given 

eight or more image point correspondences), which are the cases when (58) 

are not to be applied, and the motion parameters have to be computed using 

the resutls in [2,3,4]. 

From [2] and [3], the following mapping characterizes image corres- 

pondences of n object points on a rigid planar patch undergoing 3-D motion: 

Xi'  = 

Yi'  = 

al-Xi ♦ a2-Yi + a3 
a7-Xi + a8-Yi + 1 

a4-Xi + a5Yi ♦ a6 
a7-Xi + a8-Yi + 1 

(93) 

for i ■ 1, 2, ..., n, and al, ..., a8 are some constants.  Rewriting (93) 

as a matrix equation with the ai's as the unknowns gives 

M 

al 

a2 

a8 

(94) 

where the 2n x 8 matrix H is given by 
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M 

XI Yl 1 0 0 0 -XI-XI' -Yl'Xl' 

0 0 0 XI Yl 1 -XI'Yl' -Yl'Yl' 

X2 Y2 1 0 0 0 -X2-X2' -Y2-X2' 

0 0 0 X2 Y2 1 -X2•Y2, -Y2•Y2, 

Xn Yn 1 0 0 0 -Xn-Xn1 -Yn'Xn' 

0 0 0 Xn Yn 1 -Xn-Yn' -Yn'Yn' 

and B n XI'   Yl'   X21   Y21 . . Xn'  Yn • IT 

Therefore, given eight image point correspondences, one first examines the 

consistency of the 16 x 8 matrix equation in (94).  If 

rank (M) = rank (M : B) 

then (94) is consistent.  An efficient way of checking the consistency of 

(94) is to solve the following 8x8 normal equation of (94) for the least 

square solution of (94): 

T 
MM 

al 

a2 

a8 

T = MB 

The solution of the above normal equation is then substituted back to (94). 

If it is satisfied, (94) is consistent.  The solution will then be used to 

form the 3 x 3 A matrix defined in [2,3].  If the singular values of A are 

all identical, the motion consists of pure rotation around an axis through 
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the origin only. In this case, the rotation matrix R is equal to A multi- 

plied by a constant (which is equal to the inverse of the norm of any column 

of A since R is orthonormal) (See Theorem III in [4]).  If (94) is not con- 

sistent, one solves (58) for the E matrix, and then computes the actual 

motion parameters using the method described in Theorem I of Sec. III.l. 

VI. NUMERICAL EXAMPLES FOR THE CASES WHEN FIVE AND SIX POINTS CAN YIELD 

TWO SOLUTIONS 

Note that Theorem II only gives the sufficient conditions for unique- 

ness. Although there always exists a cone passing through six points in 

general position and the origin, this does not imply that there are two 

solutions, one for the case when C is skew-symmetric and the other not 

skew-symmetric. Experimental results show that six points are usually but 

not always sufficient to yield unique solution.  In fact, even five points 

are sometimes sufficient. The following are two numerical examples for the 

cases when five and six points are not sufficient to ensure uniqueness of 

solutions for the motion parameters.  In these two examples, the image 

point correspondences were obtained by simulation.  First, the image coor- 

dinates at tl of a number of object points with randomly chosen object space 

coordinates (xi, yi, zi), i = 1, 2, ..., n (n « 5 for Example 1, and 6 for 

Example 2), are obtained using (3). Next the object points are rotated with 

some reference rotation parameters 8,n1,n0, nQ,n», and translated r O*  01'  02'  03  OJ- 

with some reference translation parameters Axo, Ayo, Azo (=1), with com- 

puter simulation using (1) to obtain (xi1, yi', zi'), i ■ 1, ..., n. Then 

the image coordinates of these n points at t2, i.e., (Xi', Yi'), i • 1, 2, 

..., n, were computed using (3).  These n simulated image point correspondences 
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(Xi,Yi) ■*   (Xi'.Yi'), i = 1, 2, ..., n, were then substituted into (6) to 

obtain n simultaneous nonlinear equations, one for each image point corres- 

pondence (Xi,Yi) -> (Xi'.Yi').  The motion parameters in E of (6) with Az 

set to 1 were obtained by solving this system of nonlinear equations using 

global search.  For each of the following two examples, two solutions were 

found. 

[Example 1]  Five point case. 

The object coordinates of the five points at tit 

Cxi, yl, zl) = (3.0, 15.7, 5.0), (x2, y2, z2) = (28.1, 15.0, 32,3) 

(x3, y3, z3) - (5.0, 12.9, 7.0), (x4, y4, z4) = (32.7, 24.7, 18.0) 

(x5, y5, z5) = (13.1, 31.0, 22.2). 

By using (3),(Xi, Yi), i = 1, ..., 5, were found to be: 

(XI, Yl)=(0,6, 3.14), (X2, Y2) = (0.869969, 0.464396) 

(X3, Y3) = (0.714286, 1.842857), (X4, Y4) = (1.816667, 1.372222) 

(X5, Y5) = (0.590090, 1.396394). 

The reference rotation and translation parameters: 

00 = 78, nOl - 0.615661475, n02 = 0.258819045, n03 = 0.74429406, 

Axo = 23, Ayo = -10, Azo ■ 1 

The object coordinates (xi', yi', zi'), and image coordinates (Xi', Yi') 

at t2 were then computed accordingly using (1) and (3). The following two 

solutions were found: 

Solution 1:  the same as the reference solution. 

Solution 2:  0 = 159.722148, nl - 0.087422567, n2 = 0.36295928 

n3 = -0.9276949, Ax = 5.97327196, Ay = 1.50137639. 
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[Example 2] Six point case. 

The object coordinates at tl: 

(xl, yl, zl) = (3, 15.7, 54.908), (x2, y2, z2) - (28.1, 15, 166.111) 

(x3, y3, z3) = (5, 12.9, 42.232), (x4, y4, z4) = (32.7, 24.7, 309.716) 

(x5, y5, z5) = (13.1, 31, 249.971), (x6, y6, z6) = (15, 9.7, 55.868) 

The image coordinates at tl: 

(XI, Yl) = (0.0546368, 0.285933), (X2, Y2) = (0.169164, 0.0903011) 

(X3, Y3) = (0.1183936, 0.3054556), (X4, Y4) = (0.1055806, 0.0797505) 

(X5, Y5) = (0.0524061, 0.1240144), (X6, Y6) = (0.26849, 0.1736235) 

The reference motion parameters: 

60 = 78, nol = 0.615661475, no2 - 0.258819045, no3 = 0.74429406, 

Axo = 23, Ayo = -10, Azo = 1. 

(xi*, yi', zi') and (Xi1, Yi') were then computed using (1) and (3) with 

the above reference motion parameters.  The following two solutions were 

found: 

Solution 1:  Same as the reference solution. 

Solution 2:  6 = 47.65578, nl = 0.6304461986, n2 - 0.06582693435, 

n3 = 0.7735214391, Ax = -3.683375707, Ay = 0.6458049137. 

For each of the two solutions in the above two examples, the z coordinates 

for each point using (5a) and (5b) were all positive. 
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VII.  CONCLUSIONS 

Several theorems and corollaries have been stated and proved regarding 

the uniqueness and estimation of 3-D motion parameters of rigid bodies.  In 

summary, the following results have been established: 

(1) The fact that we can define 8 essential parameters e 1 ,e2,...,e8, 

that contain all the information one can possibly obtain given 

any number of image correspondences, and are unique given the 

image correspondences of at least seven points not lying on two 

planes with one plane passing through the origin, nor on a cone 

containing the origin. 

(2) The fact that given the E matrix consisting of the eight essential 

parameters, the actual motion parameters are unique, and can be 

computed simply by taking the singular value decomposition(SVD) 

of the 3x3 E matrix. 

(3) A method of determining the E matrix given 8 image correspondences. 

This requires the solution of a set of linear equations only. 

(4) An operational criteria for the uniqueness of motion parameters. 

If the determinant of a certain 8x8 matrix containing only the 

image coordinates of eight image correspondences does not vanish, 

the uniqueness is assured. 

The results in this paper should be of interest to numerous 
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areas  of  research,   including  image  sequence  analysis,   tracking,   image 

coding,   stereo   imaging,   photogrammetry,   and  robotic vision. 
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